Leetcode 第338题
题目描述
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Example 1:
Input: 2
Output: [0,1,1]
Example 2:
Input: 5
Output: [0,1,1,2,1,2]
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass? Space complexity should be O(n). Can you do it like a boss? Do it without using any builtin function like builtin popcount in c++ or in any other language.
解题思路
求一个非负整数的二进制表示中有多少个1, 这个问题可以用分治法来解决。
令非负整数 N 中的1有 f(N) 个,N的个位数为 S(N)
$$ f(N) = f(N/2) + (S(N) == 1) $$ $$ … $$ $$ f(0) = 0 $$
根据上述的思路,我们可以写出如下的伪代码:
def count_bit(N):
if N == 0:
return 0
if N & 1 == 1:
return count_bit(N/2) + 1
else:
return count_bit(N/2)
这个题需要求1..N
每个数的二进制表示中1的个数,所以我们可以将中间结果存储起来,没必要每个数都从0开始运算一遍。
代码
- solution.go
package l338
func CountBits(num int) []int {
var result []int
var bitCount int
result = append(result, 0)
for i := 1; i <= num; i++ {
if i&1 == 1 {
bitCount = result[i>>1] + 1
} else {
bitCount = result[i>>1]
}
result = append(result, bitCount)
}
return result
}
- solution_test.go
package l338
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestCountBits(t *testing.T) {
assert.Equal(t, []int{0, 1, 1}, []int{0, 1, 1})
assert.Equal(t, CountBits(2), []int{0, 1, 1})
assert.Equal(t, CountBits(5), []int{0, 1, 1, 2, 1, 2})
}
2019年04月21日 / 23:37